
Morphogenesis as a Reference Architecture for
Engineered Systems

Jacob Beal1 Annan Mozeika2 Jessica Lowell1 Kyle Usbeck1

1BBN Technologies 10 Moulton Street Cambridge, MA, USA 02138
2iRobot Corporation 8 Crosby Drive Bedford, MA, USA 01730

{jakebeal,jlowell,kusbeck}@bbn.com, amozeika@irobot.com

Morphogenetic models for engineering are an attractive

idea, as current engineered systems tend to be brittle in

their design, while biological organisms adapt structure to

environment remarkably well on both an individual and evo-

lutionary time scale. The continuing synthesis of biological

evolution and development (see [2, 3]) strengthens the case

for attempting to extract new engineering principles from

the mechanisms of morphogenesis. We prefer, however, not

to engage in mere biomimicry, but to ask: what are the

concrete representational advantages that are derived from

a morphogenetic approach?

We hypothesize that a developmental program for an en-

gineered design can improve its flexibility by reducing the

redundant degrees of freedom in a design. Engineered de-

signs generally have extremely high numbers of parameters:

even a simple beam is described by at least nine parameters,

including side lengths, position, and orientation. A develop-

mental program specifies an incremental process by which

the elements of the design are related to one another, ef-

fectively creating a reference architecture—a document that

aids in development of subsequent system designs by cap-

turing design decisions and designer rationale—that is oth-

erwise lost in the blueprints of a “mature” system. The ref-

erence architecture might then be leveraged by functional

blueprints [1] to simplify the creation of variant designs,

while retaining the operational viability of each variant.

Morphogenesis thus becomes a guide for how to maintain

integration of a design as its components are being changed,

whether by a human designer or an evolutionary algorithm.

(a) LANdroid

������

������

(b) Part-Centric

������

������

(c) Interface-Centric

Figure 1: A developmental program for a robot
breaks symmetry, determining how changing an at-
tribute (e.g. flipper length) interacts with other as-
pects of a design.

We are investigating this hypothesis in the context of

designing a robot similar to the iRobot LANdroid (Fig-

ure 1(a)), which uses a pair of limb-like flippers to help it

Work sponsored by DARPA DSO under contract W91CRB-11-C-0052; the

views and conclusions contained in this document are those of the authors

and not DARPA or the U.S. Government.

3rd Morphogenetic Engineering Workshop 2011 Paris, France

climb over obstacles. Consider, for example, an incremental

increase in the length of the flipper, to help the robot climb

over a larger obstacle. That length increase can be realized

in many ways: the flipper can extend forward, backward,

or any mixture of the two. In addition,/ the flipper axle’s

attachment point can remain fixed with respect to the robot

body, with respect to its distance from either the front or

back of the flipper, or any mixture of these. Even such a

simple change has many options and no a priori means of

distinguishing between them.

Specifying a developmental program implicitly specifies a

hierarchy of importance for spatial relationships between el-

ements of the structure. These relationships in turn create

a design-specific atlas of coordinates that dictate how varia-

tions interact. For example, when a hominid arm is length-

ened, the developmental program for limb buds ensures that

it extends further out from the body, rather than attempting

to invade into the body, and growth is distributed across the

upper arm, forearm, and hand. Figure 1 illustrates this idea

for the example of changing flipper length on a robot, the

difference between “part-centric” coordinates typically used

in engineering blueprints, and an “interface-centric” coordi-

nates that might be specified in a developmental program.

Each choice in a developmental sequence implies that

some modifications will be easier, and others will be harder.

By choosing a particular sequence, we are making commit-

ments about its position in a “phylogenetic tree” of possi-

ble variants. The developmental sequence thus effectively

encodes the relative priority of design commitments. Deci-

sions that are encoded earlier in the developmental process

are more difficult to change in variant designs because once

they are encoded, they may affect part relationships in later

stages. Conversely, late-developing structures or relation-

ships will tend to be more independent of one another and

therefore easier to modify. For example, a LANdroid-like

robot design might begin with a body plan based around

four limbs, which later differentiate into wheels and connect,

or around two tracked drives that end up differentiated to

contain two wheels each. By encoding the “limb vs. track”

decision at such an early stage, we make it a fundamental

choice about the nature of the design, and difficult to modify

in subsequent variations. Thus, these two choices each imply

a different family of easily accessible variants (Figure 2).

We have created a draft developmental sequence for the

body plan of a LANdroid-like robot. The sequence begins

with a square egg (to better match current engineered sys-

tems and manufacturing processes), and proceeds using two

simplifying assumptions: there are no mechanical fasteners,



�����

�����

���	���	

���	 ���	

�
�����

��������

�����
�������� ������

��������

��
���
��

��
���
��

��
�
��

��

����
�
�����
����

��

Figure 2: Alternate developmental paths for
LANdroid-like robot exist within different families
of easily accessible variants.

and elements can be formed of arbitrary substance.

Our developmental sequence constructs shape with the

aid of four manifold operations based on well-understood

patterns in biological morphogenesis: coordinatize (chemi-

cal gradient), latch (selection of cell fate), scale (directed

proliferation), and connect (cell migration). We apply these

operators to produce the sequence of developmental stages

shown in Figure 3.

Stage 1: basal coordinates are created, along anteropos-

terior, dorsoventral, and mediocentral axes. Opera-

tions: coordinatize

Stage 2: basal coordinates are used to partition the robot

into a coarse body plan, with the exterior latching into

“skin” and the borders between regions latching to be-

come“frame.” Operations: latch

Stage 3: the electronics region differentiates along the an-

teroposterior axis into sensor and CPU regions. The

frame between limb buds recruits nearby material to

form a gap between anterior and posterior limbs. Op-

erations: coordinatize, latch

Stage 4: limb buds scale themselves out of the body, then

establish a proximodistal axis and local centromedial

axis. The power region recruits inter-limb gap mate-

rial. Operations: coordinatize, latch

Stage 5: distal section of limb buds differentiates into

wheels. The proximal section of front limb buds dif-

ferentiates into drive. For rear limb buds, the flipper

axle differentiates using the centromedial axis, and the

proximal section of the limb bud differentiates into a

passive mounting point. The wheels will round them-

selves later, as the body scales up. Operations: latch

Stage 6: flipper axles scale to meet in center and form new

buds at the distal end. Wheel edges use chemotaxis to

connect tracks from the front wheel to the back wheel.

Operations: scale, connect, latch

Stage 7: flipper axles scale outwards to form the flipper

drive, pressing away nearby sections of CPU and

power. Distal sections of the axle differentiate into

flipper buds and form a new anteroposterior axis. Op-

erations: scale, coordinatize, latch

!"#$"%&'(#)*)'(&#"+"$(&#,"#

-&!,"*)(&#)*

(a) Stage 1

!"!#$%&'(#)

"(*+"(*+

"(*+ "(*+

,&-!%

(b) Stage 2

!"#

$%&'$%&'

$%&'$%&'

()*(+,
-+.),

(c) Stage 3

!"#$%

!"#$%

(d) Stage 4

!"#$%

!"#$% &'()*

&'()*

+,#--%"./0,%

12%%,3

(e) Stage 5

!"#$%

(f) Stage 6

!"#$$%&
'&#(%

(g) Stage 7

!"#$$%&

(h) Stage 8

Figure 3: Developing body plan for a LANdroid-like
robot with flippers.

Stage 8: flipper buds form flippers. Operations: scale

After stage 8, the base robot body plan has been formed.

Each of the sections refines its details, scaling to a mature

size, as dictated by functional blueprints. Meanwhile, power

and signal wires connect the CPU, batteries, and motors us-

ing the connect operator, a process similar to innervation

in vertebrates. We are currently working to integrate this

developmental sequence with functional blueprints that we

have developed for the robot, such that the coordinate sys-

tems created during development can be used to guide vari-

ation as described above.

In summary, we hypothesize that developmental programs

can act as reference architectures by concisely expressing the

designer’s decisions while maintaining adaptability toward

subsequent designs. The encoding of a developmental model

may then organize the relative difficulty of modifying each

design decision—a mechanism for scoping designer rationale

to particular design decisions. The presented robot design

examples represent steps toward testing these hypotheses in

the context of complete engineered systems.

References.

[1] J. Beal. Functional blueprints: An approach to

modularity in grown systems. In International

Conference on Swarm Intelligence, 2010.

[2] S. B. Carroll. Endless Forms Most Beautiful. W. W.

Norton & Company, 2005.

[3] M. W. Kirschner and J. C. Norton. The Plausibility of

Life: Resolving Darwin’s Dilemma. Yale University

Press, 2005.


